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HIGH-ORDER/SPECTRAL METHODS ON UNSTRUCTURED GRIDS

I. TIME-DOMAIN SOLUTION OF MAXWELL'S EQUATIONS *

J.S. HEST[IAVEN t ANI) T. WARBURTON_

Abstract. We present an ab initio development of a convergent high-order accurate scheme for the

solution of linear conservation laws in geometrically complex domains. As our main examl)le we present a

detailed development and analysis of a scheme suitable for tim tin,e-domain solution of Maxwell's equations

in a three-dimensional domain. The fillly unstructured spatial discretization is ma(te possible by the use of a

high-order nodal basis, employing nmltivariate Lagrange polynomials defined on the triangles and tetrahedra.

Careful choices of the unstructured nodal grid t)oints ensure high-order/spectral accuracy, while the equations

themselves are satisfied in a discontinuous Galerkin form with the boundary conditions being enforced weakly

through a penalty t.erm. Accuracy, stability, and convergence of the semi-discrete approximation to Maxwell's

eqlmt.ions is established rigorously and tlounds on the global divergence error are provided. Con('erns related

to efficient implementations are discussed in detail.

This sets the stage for the presentation of examples, verifying the theoretical results, as well as illustrating

the w?rsatility, flexibility, and robustness when solving two- and three-dimensional benchmarks in colnputa-

tional electromagneties. Pure scattering as well as penetration is discussed and high paralM perfornmnce of

the scheme is demonstrated.

Subject classification. Applied Mathematics

Key words, high-order/spectral accuracy, stability, conw_rgence, unstructured grids, Maxwell's equa-

tions

1. Introduction. The ability to accurately and reliably model wave-dominated i/roblems contimms

to be all essential, and in many cases an enabling, technology in tile development and analysis ()f emerging

technologies such as stealth technoh)gy, noise reduction, subsurface exph)ration and optical ('onmmnication to

name a few. These are all problelns characterized by being very large in terms of a eharacteristi(' wavelength,

geometrically extreInely complex, often eonq)osed of a heterogeneous collection of different materials and all

requiring a high fidelity solution with a rigorous control of the munerical errors. Even for linear llroblems

such conditions forces one to look beyond standard coniputational techniques and seek new conli)utational

frameworks enabling the accurate, efficient, and robust mo(leling of wave-t/hen(mmna over long times in

settings of a realistic geometric complexity.

The requirement that one can accurately propagate waves over many periods of time naturally suggests

that high-order/spectral methods be eonsidere(t [1]. On the other hand, the use of such methods is tra-

ditionally in conflict with the need for significant geometric flexibility t)y being restricted to fairly simple

geometries. The standard approach to overcome this restriction is to introduce a nmlti-element fornmlation

*This work was partially supported by AFOSR/I)ARPA under <:<mt racl F4962(1-1-0426 and t)y the National Aeronauti('s

and Spa(:+, Administration under NASA (_ontract NASI-.q7{)46 while th(' authors were in residence at I('ASE, NASA Langley

[¢esearch (?enter. Hampton, VA 23681-2199. JSII also acknowledge support by the Alfred t ). Sloan Foun(lati(m as a Sloan
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in which the basic building block is parametrically mapped cubes in the spirit of finite element methods.

This approach has been very successfully applied to the solution of problems in fluid mechanics [2, 3, 4].

gasdynamics [5, 6, 7, 8, 9, 10], and electromagnetics [ll, 12, 13, 14, 15].

While such techniques, when applicable, are powerful they do suffer from the need to tile the computa-

tional using only hexahedral elements. Unfortunately, autoinated grid generation using only such elements

for general three-dimensional computational problems of a realistic complexity remains a very nontrivial

task and is typically very time-consuIning. Furthermore, spatial adaptation, while certainly possible, is

quite a challenge with a method based solely on hexahedral elements. On the other hand, automated grid

generation employing a fully unstructured grid is significantly more mature, due mainly to extensive devel-

opments within the finite-element comnmnity. Spatial grid adaptation is also considerably easier within a

fully unstructured grid fornmlation.

It is with these issues in mind that we present an ab initio development of a computational framework

that combines the strengths of a high-order/spectral fornmlation with the flexibility of a fully unstructured

grid. The formulation relies on the resolution of two central issues. On one hand we shall discuss in detail

how to represent functions defined on triangles and tetrahedra to high accuracy and how this translates into

the construction of basic operators needed to solve partial differential equations. On the other hand we n_ed

to address the issue of how to use such a high-order representation to formulate a convergent scheme suitable

for solving systems of linear hyperbolic probleins in general and Maxwell's equations in particular.

Much in the spirit of the original work on spectral element methods [2, 3] we shall focus on the fornmlation

of efficient and flexible unstructured grid methods using nodal elements. This is in contrast to past attempts

to develop high-order unstructured grid methods, suitable for solving time dependent problems, which have

been focused on tlm use of high-order modal expansions, e.g., [16, 17, 18, 19, 20, 21]. In these works, modal

expansions of orthogonal polynomials defined on the simt)lex are utilized while a straightforward monomial

basis is used in [22] (see also [23] and references therein) nmch in the tradition of classical high-order finite

element methods for elliptic problems [24, 25].

In contrast to the classical spectral element approach, however, we do not seek a globally continuous

solution but rather require that tile equations be satisfied in a discontinuous Galerkin/penalty fashion. This

is related to the classic discontinuous Galerkin finite element method [23] although the present approach

represents a more general formulation, containing the classic discontinuous Galerkin formulation as a special

case. Such more general techniques have been known in tile context of spectral methods as penalty meth-

ods [26] for a while and recently stable formulations on general one-dimensional [27], triangular [28], and

tetrahedral domains [29] have been discussed. These methods all share the great advantage of a complete

decoupling of all elements, heiwe enabling high parallel efficiency, and allows for discontinuous solutions

between elements in a natural way. As we shall see later, this is essential in allowing for the inclusion of

material interfaces in a natural and straightforward manner.

While tile majority of what we shall discuss is of a very general nature we have chosen to discuss in detail

the development and analysis of a high-order/spectral accuracy unstructured grid scheme for the solution

of Maxwell's equations in the time-domain. This is not only a challenging problem but also a problem of

significant contemporary interest due to emerging technologies such as broad-band target illumination and

penetration, advanced materials and diffraction based modern optics, all characterized by being electrically

large, having a significant separation of scales and requiring substantial geometric flexibility of the compu-

tational fl'amework. On the other hand, Mmxwetl's equations serve as an excellent example of numerous

other linear hyperbolic systems of equations in, e.g., elasticity, acoustics, solid mechanics etc, for which



thepresentedframeworkcan be adapted with little effort. In part II of this work [30] we shall discuss in

detail generalizations of the proposed computational framework with an empha.sis on tile solution of general

systems of conservation laws.

What remains of the paper is organized as follows. In Sec. 2 we set the stage by briefly describ-

ing the physical setting, Maxwell's equations, their normalized and scattered field formulations, as well as

boundary conditions at material interfaces and metallic boundaries. The first step in the construction of

a high-order/spectral unstructured grid scheme for the solution of Maxwell's equations is taken in Sec. 3

where we introduce a Lagrangian high-order basis oll the general curvilinear simplex. In the appendix we

include a discussion of techniques allowing for efficient and accurate implementations of the basic operators,

e.g., differentiation, filtering, and high-order integration in vohnnes and on faces. By providing the basic

building block for the spatial approximation, this development sets the stage for the forinulation of a high-

order/spectral convergent scheme for solving Maxwell's equations as discussed in Sec. 4. The convergence

of the scheme, being a generalized discontinuous Galerkin/penalty method, is established in the classic way

through consistency as well as local and global stability. A stronger and optiinal result is fllrthermore estab-

lished hy showing the scheme to be error-bounded, guaranteeing at most linear growth in time and control

over the growth rate. This result is also used t() estat)lish bounds on the behavior of the (tivergen('(, error.

Verification an(l t)erformance of the complete scheme is the topic of Sac. 5 where we present a numl)er of

simple tests, verifying the theoretical results, t)rior to illustrating the efficiency, versatility, and robustness

of the comt)utational framework for the solution of two- and three-dimensional scattering and penetration

prot)lems. We shall also t)riefly discuss measures taken in the iinplementation of the scheme to ensure efficient

execution on large, scale contemporary parallel computational platforms. In Sec. 6 we conclude by offering

a few remarks and guidelines for fixture work within Ill(' present framework.

2. The Physical Setting and Maxwell's Equations. We shall concern ourselves with the direct

solution of Maxwell's equations on differential form

_ aB(1) OD ¢ × H + j --_ =-¢ × k
~ --

Ot Ot

(2) ¢.b=,a, ¢./_=0 .

within the general three-(timensional domain, f_, with the charge distribution, /_(x, t). The electric field,

E(x, t), and the electric flux density, b(_:, t), as well as the magnetic field, t/(_:, i), and the magneti(t flux

density,/_(5:, t), are related through the constitutive relations

b = _.E'..b =.all.

The I)ermittivity tensor, _, as well as the permeability tensor, _, are in general anisotrot)i(' and may depend

on space and time as well ;is the strength of the fields themselves. The current, J, is typically assumed to

t)e related to the electric field, _7, through Ohms law, J = #E, where 5 measures the finite conductivity,

although more complex relations are possible.

In this work, we shall restrict the attention to materials which can be assmned isotropic, linear and

time-invariant, in which (:as(" tile constitutive relations take the form

D = g,)e,.E , b = a[)/_H .



Here go = 8.854 x 10 -12 F/m and Po = 4zr x 10 -T H/m represent the vacuum permittivity and permeability,

respectively, and ¢r(x) and #r(x) refers to the relative permittivity and permeability, respectively, of the

inaterials.

Taking the divergence of Eq.(1) and applying Eq.(2) in combination with Gauss' law for charge conser-

vation immediately c(mfirms that if the initial conditions satisfl, Eq.(2), and the fields are evolved according

to Maxwell's equations, Eq.(1), the solution will satis_ Eq.(2) at all times. Hence, one can view Eq.(2) as a

consistency condition on the initial conditions and limit the solution to the tim_dependent part of Maxwell's

equations, Eq.(1).

To simplify matters further, we shall consider the non-dimensionalized equations for which we introduce

the normalized quantities

x--= , t- -
L L/_o

where L is a reference length, and c0 = (goP0)-L/2 represents the dimensional vacuum speed of light. The

fields themselves are nornlalized as

- D 3L
E- Z°'E' H=-=- , J=-=- ,

FIo ' Ho Ho

where Zo = /V_o/go refers to the dimensional free space intrinsic impedance, and I2/o is a dimensional

reference magnetic field strength.

With this normalization Eq.(1) takes the nondimensional form

OE OH
(3) _ -- =V xH+J , #r--_-=-VxE ,

which is the general form of the equations we consider in the following.

To solve Maxwell's equations in the vicinity of boundaries, penetrable or not, we shall need boundary

conditions relating the field components on either side of the boundary.

Assuming that a normal unit vector, it, to tile boundary is given, the boundary conditions on the electric

field components take tile h_rm

it x(EI-E2)=0 , ft-(D1-D2)=p_ ,

where Ei and Di, i = (t, 2), represent the fields on either side of the interface and p, represents . surface

charge. Equivalently, tile conditions on the magnetic fields are given as

itx(H1-H2)=J_ , it'(B1-B2)=0 ,

where J, represents a surface current density.

In the general case of materials with finite conductivity, no surface charges and currents can exist, and

the simplified conditkms take tile form

(4) it x (El -E2) =0 , it x (HI -H2) =0 ,

expressing contimfity of the tangential field coml)onents, while the nornml eomlmnents of tile flux densities

must satisfy



(5) ft • (D1 - D2) = 0 , /t. (BI - B2) = 0 ,

i.e., they are likewise continuous, while tile normal coinponents of the fields themselves are discontinuous.

For tile important special case of a perfect conductor, the conditions take a special form as tile perfect

conductor supports surface charges and currents while the fields are ramble to penetrate into the body, i.e.,

(6) /txE=0 , i_.B=0 .

2.1. The Scattered Field Formulation. For scattering and penetration problems involving linear

materials it is often advantageous to exploit the linearity of Maxwell's equations and solve for the scattered

field, (E _, H'_), rather than for the total field, (E, H), which are trivially re.lated as

E = Ei + E _ ' H = Hi + H "_ '

where (E i, H i) represents the in(:ident field, illuminating the scattering ot)ject. Assunfing that (E/, H i)

represents a particular sohltion to Maxwelt's e(tuatioils, one recovers the scattered field formulati(m

OE _

(7) c_ at V x H "_+ aE '_ (c,, :i OEi

OH '_ . if)H i

(8 ) ],_ 0 _ l -- _ X E' - (#,.- I_'_) 0--7- '

where cf(x), p/(x), and ai(x) refers to the relative permittivity, permeability and conductivity of the media

in which the incident fieht represents a solution to M_Lxwelt's equations. To siml)li_" matters we have assumed

Ohms law, J = aE. We note that the important special case of a vacuum field illuminating the scattering

object is recovered by using e'/r = ILl. = 1, cri = 0, and using a free space solution in the forcing flmction.

In this formulation, the boundary conditions along a dielectric interface take the form

for the tangential components, while the conditions on the scattered field components beconms

(10) n x E s = -fix E i , n. B '_ = -#_fi. H i ,

in the case of _l perfectly conducting boundary. As we shall see shortly, there is no nee(t to consider the

conditions on the normal components fllrther.

3. The Nodal Element. We shall seek approximate solutions t,) Maxwell's equations in a general

domain, l_, possibly containing a heterogeneous collection of scattering and penetrable bodies. To facilitate

the required geometric flexibility, we represent the computational domain as the union of K non-overlat)ping

body-conforming d-simplices, D. Hence, for two-dimensional problems we shall use triangles as the geometric

t)nilding block while the tetrahedron is employed to fill the coml)utational volume.



v3
FIG. 1. Mapping between the curvilinear tetrahedral, D, and the standard tetTnhedral, I. including the numbering .nd

notation employed in the text.

While this multi element formulation is essential in enabling tile solution of geometrically (:omplex

problems, it also introduces new complications, tile understanding and resolution of which are at the hear_

of the construction of the scheme. In particular, the use of simplices requires an understanding of how to

constru(:t high-order accurate Lagrange interpolation polynomials on such elements and, subsequently, how

we can formulate approximations to basic operations such as interpolation, differentiation and integration

of functions defined on general curvilinear d-simplices. These are issues we shall deal with in the following.

For continuity we shall postpone the discussion of practical, yet essential, techniques for the efficient and

accurate implementation of the basic operations to the appendix.

The equally important question of how to exploit this knowledge to construct global high-order/spectral

accuracy solution techniques suitable for Maxwell's equations as well as other linear hyperbolic systems is

tim central issue addressed in Section 4.

3.1. The Curvilinear d-Simplex. We start by assuming that the computational domain, 12, is de-

composed into curvilinear d-simplices, D C R a, as illustrated in Fig. 1 by a 3-simplex, a tetrahedron. For

generality we shall limit much of the discussions to the three-dimensional case and regard the two-dimensional

problem as a natural simplification.

While we shall not require that the faces of the tetrahedron are planar, such an assumption will, as we

shall see shortly, significantly simplify matters in terms of analysis as well as implementation. It should also

be noted that for most computational problems, the vast majority of the elements will have planar faces

which thus supplies the single most important special case.

Let us introduce the standard tetrahedron, I C R:_, given by the vertices

[1] [-1] [-1]
vl = -1 , vH = -1 , vHi = 1 , viv = -1 ,

-1 -1 -1 1

as illustrated in Fig. 1 with the corresponding vertices in D termed Vl-V4. To fix the notation within the

tetrahedron, let us also name the face in D opposite vertex vl, i.e, spanned by the three vertices v_, va, and

v4, for face 'a', that opposite of vertex v2 for face 'b' and so forth. In general we shall name the coordinates

in the physical simplex, D, as x = (x, y, z) while the coordinates, ( E I, shall be referred to as ( = (_, tl, £_.



TorelateoperationsonDtothoseonIweneedtoconstructasmoothandinvertiblemapping,• : D--+1,
that uniquelyrelatesthetwosimplicesasillustratedin Fig. 1.In thecaseofageneralcurvilinearmapping,
thiscanbeconstructeddirectlyby tile useof lineartransfiniteblendingfunctions.Althoughlengthy,
expressionsof thesemappingsarestraightforwardlyarrivedat byblendingparameterizedversionsof faces,
edges,andthevertex-coordinates.Foradetailedaccountofthiswereferto [21].

A particularlyimportantandsimplecaseis that of D heingstraightfacedin whichcasethemapping
becomes

1+ ( 1 + rtv 1 + (
(11) x = k0(_) = 1 -1- _ -}-2 ?_ -1- _vl -1- T v2 -1- T 3 + TV4 ,

derived directly by exph)iting that any point in the straightfaced tetrahedron can he expressed a,s a convex

stun of the vertices with the weights being the barycentri(" (:oordinates (see e.g. [21]).

Once the mapping, _((), has I)een estahlished, we can utilize this to conlpute the curvilinear metric of

the transformation hy

Ox Of o,_(_) o(

o( ox o( ox

_ _._ _z 1 0 0

Y( Yrl Y4 "r].r 71u (,: = 0 1 0

z_ z,_ zi _- (,j (,: 0 0 1

Within this new metric, the divergence of a vector feld. F = (F_., F:j, F:), is expressed on the well known

fornl

1 [ff . +ff_I(.]F.Vt/,+_(.IF.V(,) ]'

where we have introduced the transformation Jacobian

.1 = Ox = 1
o¢ v_. (v,i x v_)

The metric also iInmediately gives outward pointing normal vectors at the 4 faces of D on the form

n" = V( + VT/+ V( ,

n b= -_'_ , rt c= -Vt1 , rid=-V]_ .

It is worth while paying attention to the special case of the mapping between straightsided tetrahedra,

1 I -"Y'+ ]0¢- -2 _.r+.2 ,

is constant. Thus, the fifll metric, V_, VTI, and V(, is constant as is tile transformation .lacohian, ,I, i.e.,

every two straightsided tetrahedra are connected through a simI)le linear transformation. As we discuss in

detail in the appendix, this ohservation can be exploited to signifi(-antl,v simplif.v the implementation of the

general unstru('tured schelne by introducing teml)laie operators.

Let us finally define a numher of different inner products on the curvilinear simplex, D. Consider the

two smooth flmctions, f[D] E C[D] and .q[D] C C[D] for which f(x) : D --+ R and .q(x) : D -+ R. The global

inner product, the associated L2-norm and the inner produ(:t over tile surface of D are define(t as

Eq.(11), in which case we realize that



= /D , = = _ f(x)g(x)dx .(f'g)D f(x)g(gc)dx (f,f)g It/ll_ , (I,g)&D D

Tlmse local inner products and norms form tile basis for tile corresponding global broken measures as

---- _ f 2(f,g)Q Z(f,g)D _ (f,f)_=Y_ll.fll'_,-=ll I1_ ,
k k

(f, g)5_ = _ _ f(=)g(x) dx
k ,]SD _

where K represents the total number of elements used to cover Q.

3.2. 'A Multivariate Polynomial Basis on the d-Simplex. With the curvilinear framework in place

we can now focus the attention on the development of a high-order/spectral representation of a function

defined oil the elemental element, I, rather than a general D.

Contrary to the approach taken in [17, 21], where a purely modal approximation is utilized, we shall em-

ph)y a purely nodal scheme. Hence, we assume that the unknown solutions, q(_, t), can be well approximated

as

N

qN(_,t) = Z q(_j't)Lj(_) ,
j=O

where Lj(_) is the genuine three-dimensional multivariate Lagrange interpolation polynomial, Lj(_) E PI_,,

where

P_ = span{_irlJ(k;i,j,k >_ 0;i +j + k _< ,t} ,

based on the /V;_, = N + 1 nodal points, (/, given in the interior as well as on the boundary of I. It is

straightforwar(t to see that the mininmm number of nodal points that will allow this basis to be complete is

:V_I = _(n + 1)(r, + 2)0, + 3) ,

where n signifies the maximum order of tile polynomial.

The crucial choice of a nodal set, well suited for Lagrange interpolation within the tetrahedron, is an

issue that has received some attention lately with such nodal sets being given in [al] and [29]. The former

is derived by using an minimization procedure for the identification of the nodal set that minimizes an

approximation to the Lebesque constant while the approach taken in the latter work involves the solution of

an electrostatic problem within the tetrahedron. Either procedure results in fully unstructured nodal sets, an

example of which is given in Fig. 2, with a large degree of symmetry, exactly N a nodes within the tetrahedron

and a very well behaved Lagrange polynomial as measured through the growth of the associated Lebesque

constant. Furthermore, both nodal sets include the 4 vertices in I and have exactly ½(n + 1)(n + 2) nodes

at each of the four faces. This latter property is important as it ensures that a complete two-dimensional

polynomial is supported by the nodes on each face.

In this work we have chosen to use the nodal set from [29] as the nodes on which the Lagrange interpo-

lation polynomials are based. These nodal sets are given for n up to 10, corresponding to Na0 = 286 nodal

t)oints within each tetrahedron and 66 nodal points at each face.



Fl(:. ') Example of nodal set for a 5th order interpolation, i.e.. N 3 = 56 n_Mes within the tetrahedron. In a) we show a-" 5

3D view of the nodes within the lelrahedron while b) gives a top vie.w emphasizing the high degree of symmetry associated with

the nodal set.

Once we have identified a proper nodal set, we can proceed with the formulation of the interpolation

which nmst have the t)roperty

Z_f(_j) = f((j) ,

for any f E C[I]. For the actual construction of the interpolation polynomials, let us introduce the complete

t)olynomial basis, Pi(_) E P:,_, and express the interpolation prop(_rty as

(12) Vi :

()r in corot)act ibrm

f((i) = E fJPJ((i) •

j=l)

\:je = f ,

where j_ = []0 .... ]x] r is the vector of expansion coefficients, f = [f((_,),..,f((x)] v is the grid vector

and Vii = pj(_i) is the multi-dimensional generalization of the Vandermonde matrix. Clearly, for the

interpolation to exist, V must be nonsingular which is a prol)erty that depends soMy on the nodal sets. For

polynomial interpolation along the line it is well known that IVI ¢ 0 provided that the nodes arc distinct.

Unfortunately, no such simple results are known for l)olynomial interpolation in I and we shall simply rely

on comtmtational verification that the nodal sets indeed allow for the computation of a unique intert)olation

polynomial[29]. Under this assumption we can likewise express Eq.(12) as

(13) Vi :

N

f(_i) = E f(_i)LJ(_i) '

j=ll

which has to be true tbr any f E C[I], and in t)articular Pi(() itself. Hence, the Lagrange l)olynomials can t)e

evaluated at. any point, ( E I, t)y solving the dual problem

(14) V'rL = p ,



where L -- [L0(¢), .., LN(¢)] T and p = [P0(¢), ..,PN(_)] T. This naturally enables the evaluation of I_.f(¢)

anywhere in 1 by computing Lj(_) and applying Eq.(13).

In seeking the approximate solution to partial differential equations, the single most important operation

is that of computing approximations to spatial derivatives. However, once we have identified a well behaved

Lagrange basis, approximations to spatial derivatives evaluated at the grid points, _i, is obtained directly

through matrix-vector products as

where the entries of tile quadratic (lifferentiation matrices are obtained as

D_ OLj(_i) " OLj(_i) D_j - OLj(_i)
_.t- O_ ' Dij -- 071 ' O(

The entries can be computed directly by using Eq.(14) and the uniqueness of the pol.ynomials as

D ¢ = p_v -1 D,I = p,w -I D ¢ = p<v -I

where the entries of p(_.,_,<l are

Opj (_ i) ,, Opj (__) p _ Opj (_ i)
(15) P_J -- 0_ , Pij - Oq ' 'J = -0(

4. A Convergent Scheme for Maxwelrs Equations. Having realized high-order formulations of

basic operations on the nodal tetrahedron, we are now in a position to develop a scheme suitable for solving

linear systenls of hyperbolic problems in complex geometries, exemplified by a scheme for solving Maxwell's

equations.

To silnpli_, matters, let us express Maxwell's equations, Eq.(3), ilt conservation form

(16) Oq
0---[+ 27. F(q) = S ,

where we have introduced the state vector, q, and F(q) = [F1 (q), F2(q), F:_(q)] T, as the flux defined as

q= I,t_H , Fi(q) = ei x E '

respectively. Here e, signifies the three Cartesian unit vectors and S = [S E, sH] T represents body forces,

e.g., currents, and terms introduced by the scattered field formulation, Eqs. (7)-(8).

4.1. Central Elements of the Scheme. Let us begin by introducing the nodal basis discussed in the

previous section and assume that the statevector, q, can be represented as

N

q_(x,t) = E q(xj't)Lj(x) ,
j=0

within each general curvilinear element, Dk,

We shall consider schemes in which we require Eq.(16) to be satisfied in the following way

(17) £ (OqN\Ot +V-FN-SN)¢_(x)dX=_D'g,_(x)G([qN])dx

l0



Here 0i and _;'i signib _ sequences of N flmctions while G([qN]) is a function of the jump [qN] of the stat evector

at the boundary/interface of tile element, e.g., if the face is at a solid boundary [qN] reflects the difference

between tile prescribed boundary condition and the actual vahm of the statevector.

Let us emphasizing a few characteristics of this general formulation, Eq.(17). In particular we see that

consistency of the scheme is immediate as the right hand side of Eq.(17) vanishes when the exact solution is

introduced, i.e., if the inner scheme is consistent so is the full approximation. One should also obserw, that

boundary/interface conditions are not imposed exactly but rather weakly through the penalizing surface

integral. Finally we emphasize that in a multi-element context, the formulation is inherently discontimmus,

enh_rcing the interface conditions weakly through the penalizing term and giving rise to a highly parallel

formulation of the scheme.

In choosing Oi, */'i and G([qx]) one has a tremendous degree of freedom in designing schemes suitable for

solving differential equations. In [10] we proposed st.able sl)ectral collocation methods with weakly imt)osed

boundary/interface con(titions for solving tile adw_ction-diffusion equation and the compressibh_ Navier-

Stokes equations t)y choosing 0i(x) = ¢',i(x) = gi(x -xi) and defining G([q_,,]) to imt)ose the correct upwind

flux conditions. Alternative choices, likewise leading to stable schemes fi)r solving linem' conservation laws,

were discusse(l in [28, 29]. There we considered mixed Galerkin-(:oth)calion formulations by choosing el(X) =

Li(x), as in a classic Galerkin fornmlation, but using _/,,(x) = 5(x -xi) to impose the boml(tary/interface

conditions. UI)wind flux conditions were used to construct G([qN]).

To forinulate a scheme for Maxwell's equations, let us assume that the electric. E, and magnetic, H,

field components can be represented as

N N

EN(x,t) = Z E(xj, t)Lj(x) = _ Ej(t)Lj(x) ,

j=O j-O

N N

HN(x,t) = _ H(xj,t)Lj(x) = _ Hi(t)L)(x) ,

j=o j=o

within each general curvilinear elenlent, D k. Here Ej(t) and Hj(t) represent the time dependent nodal

values i.e., the unknowns of the s¢:henm, while xj = xj({j) are the mapped nodal coordinates.

We shall require that tile equations, Eq.(3), be satisfied in the following Galerkin-like way

\ 0t + v. F_- - SN L,(x) a_ = T(x)L_(z),i • [F+N]d_ ,D

where q_., F_-, and SN refers to the approximate state vector, flux and body force, respectively. As in Sec.

3, Li(x) represents the 7t'th order Lagrange interpolation polynomial, i.e., in the language of the general

formulation in Eq.(17) we have Oi(x) = Wi(x) = Li(x), while we have G([qN]) = r(x)iz. [F+.]. Here n is

the outward t)ointing nornlal vector, r(x) is a free parameter to be specified later, while [F+:] reflects the

jump in the upwind flux. i.e.. we have introduced the splitting, FN = F +, _,_+ F_. into the upwind, F+,, and

downwind, F_._ component of the flux.

It is noteworthy that the classical discontinuous Galerkin fornmlation [23] is recovered fl'om Eq.(18) by

a simple integration by parts and considering all fluxes at inlet'faces as upwind fluxes, i.e.. it is a special case

of the nmch more general approach put forward in Eq.(17).

F +To understand the exact form of the penalizing flux term,/z • [ x], it is helpful to recall that

1!



_t × EN

i.e., the normal component of the fluxes represents nothing else than the tangential field components and

tile effect of the right hand side in Eq.(18) is to impose the correct boundary/interface conditions on the

tangential field components at the face of the element. It is worth noticing that the unspecified function,

T(x), controls how strongly the conditions are enforced, e.g. if T is very large the conditions are essentially

enforced exactly.

As discussed in Sec. 2 tim boundary conditions on tile tangential field components, be that in the

scattered field or in the total field formulation, require continuity between any two elements regardless of

their material properties. Tiffs yields the explicit form of the penalizing boundary term as [32]

(19)

where

{ -Z-lit x (Z+[HN] -/t × [ENDft. [F+] = Y-'/t × (-it x [HN] - Y+[EN])

[Ex]=E+_-E_ , [HN]=H+,-H_ ,

measures the jump in the field values across an interface, i.e., superscript '+' refers to field values from the

neighbor element while superscript '-' refers to field values local to the element.. To account for the potential

differences in material properties in the two elements, we have introduced the local impedance, Z ±, and

conductance, t "+, defined a.s

Z± - 1 ;p_
-VJ '

and the sums

Z=Z++Z TM , Y=Y++Y- ,

of the local impedance and conductance, respectively.

The special case of a perfectly conducting walt is handled in the above formulation be defining a mirror

state within the metallic scatterer as

¢t xE + =-/t xE) , it xH +.=/t xH;, ,

to enforce the correct boundary conditions and define the nmterial parameters by Z + = Z-.

Now returning to the semi-discrete scheme, Eq.(18), we have an elementwise expression for tile electric

field

(20) x ( dEj-- - × - M  sy')

12



and likewise for the magnetic field components

(21)
•= \ 'J dt + Sij xEj-NIijS*J

( -fi' x [H'] - It+[E'])=ZF,, it,×t I) + +

Here we have introduced

M_j = (Li(x),_(x)Lj(x)) o

as the material scaled ma_ss-matrices and

, Mij = (Li(x),p(x)Lj(x)) D ,

M,j = (Li(x),Lj(x)) D Sij = (S< _!'. R_ _ = (Li(x),VLj(x)) D

representing the local mass- and stiffness matrix. Note that in the st)ecial (:as(, where c,. and p,. are elenwn-

twise constant, we recover (M _, M") = (e_M,p_M).

We have, fllrthermore, introduced the face-based mass matrices

F,t = (Li(x),r(x)Ll(x))aD ,

where the second index is limited to the trace of the nodal set situated at the faces of D.

Expressing Eqs.(20)-(21) in fully explicit form yields

(22)

and

dEN =(M_)_l S x H_- + (M _) 1 ._IsE

dt

+ (M:)-' F ( it x Z+[HN]- iT"x [E'_] )-Z-4_--Z: 5D

(23) dH_,_, _ (M") -1S x E._ + (MP) -1 M,S 'H
dt

( it x [H_'] + I'+[EN])gD_(MV)-tF itx _'++_"

The discrete operators that need to be initialized are, besides the mass-matrices, M and M_'*', which can be

computed exactly as described in the appendix and inverted straightforwardly. We shall also need

(M-_-")-' S = (1W,;') -_ [S_, S",S:] T

representing the general curvilinear differentiation matrix, as well as (M_'l') -1 M for source terms. It is

worth noticing that for all straightfaced tetrahedra with constant material i)armneters, the entries of S can

be formed directly by combinations of the classical differentiation matrices introduced in Sec. 3, e.g.,

M-tS -_ = D_, + D'bL_ + D<(, ,

and similarly for M-1S 'J and N|-IS:. Hence, as discussed in detail in the appendix, temt)late matrices can be

used for the initialization of these operators in all such elements while an individual initialization is required

for g(,neral curw,d elements and elements with smoothly varying material paranwters.

The same holds true for the face-t)ased operators M-IF which again can be precomlmted for all straight-

faced elemem.s with constant materials by linear scaling from standard t(,mt)late operators for I. The general

curvilinear faces requires individual attention.

13



4.2. Consistency. In analyzing the scheme, Eqs.(22)-(23), it is natural first to consider the global

accuracy, and hence consistency, and how it depends on the size of the tetrahedra, i.e., its h-convergence

rate, as well as how it scales with the order, n, of the polynomial approximation. To simplify matters we

shall assume throughout that all elements involw_d are straightfaced, i.e., the transformation between D

and I is linear. "_,% shall furthermore assume that the material parameters, e,, and pr, be constant on each

element, but they can vary freely between elements. We shall later briefly revisit the impact on the results

of tile analysis of relaxing these assumptions.

Let us introduce the exact solution, q = [E, HI, to Maxwell's equations, Eq.(3), as well as its projection,

PNq = [T)N E, T)NH] T, on the space spanned by n-order polynomials, i.e. T'Nq E p3. Except in very special

cases T_Nq will generally be different from tile numeri(:al s()lution, qN = [EN,HN] T, which is tile exact

solution to the discrete problem, Eqs.(22)-(23).

Before we continue we wish to note that a subtle consequence of using a purely nodal ba_sis, as ot)t)osed to

a lnodal basis, is the introduction of a discrete aliasing error in the interpolation of the initial conditions. One

couhl avoid this by reading the nodal values of the Galerkin projection of the initial conditions, computed by

using a quadrature of sufficiently high order. However, if the initial conditions are smooth and well resolved

this discrete aliasing error is small and we shall not discuss it further in what follows.

As the global error is bounded by the sum of the local, element-wise errors, it suffices to consider the

latter. Introducing the exact solution, q = [E, H], to Maxwell's equations, Eq.(3), into the semi-discrete

approximation, Eqs. (20)- (21 ), immediately yields

D D '

D D '

where T q [TE,Ttl] T= signifies the truncation error associated with the scheme. Note in particular that

the surface terms of Eqs.(20)-(21) valfish identically as the exact solution always has smooth tangential

compolmnts as dictated t)y tile physics.

To t)ound the truncation error we shall need the following result [33, 24, 25]

LEMMA 4.1. Assume that u E |VP(D), p 2> (}. Th, en there exists a constant, C, dependent on p and the

angle condition of D, but independent of u, h = diam(D), and n, such that

I1_- 7_NUIIw_(D)< ch_-q Ilullw_(D)
-- 7tp-- q

where a = min(p,n + 1) and 0 < q < a.

Here we have introduced the standard Sobolev norm

2
]al_<p

with the multi-index, a = ((_:j, (t.,, (t3)-

With this result and the use of the Cauchy-Schwarz inequality we immediately recover the consistency

result

THEOREM 4.2. Assume that the exact solution, q = [E, HI T E WV(D), p >_ 1 and that the body forces.

S q [sE, sH] T= E WP(D), p >_ O. Then there exists a constant, C, dependent on p and the angle condition

of D but independent of q, h = diam(D), and n, such that

14



( t: - 1 I:
IfTqllD_<C \np_----_ Ilqllw,,(D)+ --n,,IlSqllw_(DI/ '

where a = min(p, n + 1).

Hence, if the solution is locally smooth we call expect very rapid convergence in the order of the approx-

imation as well as by decreasing the element size. In particular, if the solution is analytic we carl expect to

recover full spectral convergence provided the scheme is stable.

4.3. Stability. Let us attend to the issue of senti-discrete stability and define the local energy

E_. I fD (.IHI'-' + _IEl'-') d_

and the associated global energy, E = _-]k E_''

Local elementwise senti-discrete stability is stated as follows

LEMMA 4.3 (Local Stability). Assume that a solution to Maxwell's equations exists on the domain D.

If the faces of the element reside away from a perfect conductor, stability of the semi-discrete approximation

to Maxwell_ equations, Eqs. (22)-(23), is guaranteed pTvvided

1
7-> -

-3

In case one of the faces coincides with a perfect conductor, stability of the semi-discrete approximation is

guaranteed if

T_X .

Proof. For local stat)ility away fronl metallic boundaries, it suffices to consider the question of stal)ility for

homogeneous t)oundary conditions, i.e., E-_ = H_ = 0. Consi(ter Maxwell's equations on the senti-discrete

form, Eqs.(20)-(21), multiI)ly from the left with (Ej, H i) and sum over all the nodes in D to obtain

and

1 d (EN,CE:v)D (EN,V x HN)D + (Ef_,S E)2 dt D

+2--- " ) d_ ,

ld ( )2dt(Hx'/tHN)D =--(HN,Y'xE,_,)D+ HN Stt' D

+ f_o 7HN. (iz x _'+Exv_:+_) "_+i_ x HN )

Adding the two contributions and applying the the divergence theorem yields

dx .

=_D(1 - r)i_. (HN x EN) dx

+ EN'izxi_x EN+--Hx.nxizXHN dx
D

15



Using standard vector identities this simplifies as

d Ek =- (l - 7)H.,_T . it x EN + _ln x S_l 2 + ._ x HNI 2 dx
dt D

To ensure semi-discrete stability it suffices to require that

(24)

where we have introduced the rotation matrix

_ v T T +H_RTRHN > 0 ,(1 T)H_,REN + _E:vR REN + .

n = R(it) =
0 --l_z nv ]

I_ z 0 --?1_ x

--?ly 7t x 0

Expressing the quadratic form, Eq.(24), as qTrAqN with A reflecting Eq.(24), one recovers the first two

eigenvalues of A ms At,2(A) = 0 while the remaining are given ms

and

7(1 +Z) + V/7.2(1 +_)2 +_2 (_3T 2 _ 27 + 1)

2Z

)t5, 6 =

v(1 + ]=) -4- V/7-2(1 + T) 2 + T 2 (--37 -2 -- 27" + 1)

2Y

Hence, a sufficient condition for stability clearly is that T > 0 and -37- 2 - 27- + 1 < 0, i.e.,

1
7"> -- .

-3

In case a face resides at a metallic conductor we emt>loy the boundary conditions

it xE_,=-it ×E +, , it ×H_=it ×H +, ,

and Z + =Z- =Z,I "+ =l'- =Y.

Following the exact same procedure as above, we recover the constraint

(1 - 7.)H_RE + ,_zET RT REN > 0 R

Computing the eigenvalues of the corresponding quadratic form yields two pairs of the form

7. 1
A, = 0 , A2,'j = -2 + -2 \/7.2 + Z2(7- _ 1)2 .

Clearly, the only way to guarantee i)ositivity of the eigenvalues and hence the quadratic forln is to choose

7.=1.[3

The result on local, elementwise stability, only supplies a necessary but not sufficient condition for

stability. To understand the issue of global stability we must also consider the influence of the coupling

between the individual elements.
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LEMMA 4.4 (Face Stability). Assume that a solution to the Maxwell's equations exists on a domain con-

sisting of two elements sharing one common face. Stability of the semi-discrete approximation of Maxwell_

equations, Eqs.(22)-(23), on this domain is guaranteed provided

7-----1 .

Proof. Consider Maxwell's equations on the semi-discrete forul, Eqs.(20)-(21). Multiply from tile left

with (Ej, Hi) and sum over all the nodes in D to ol)tain

alld

ld
2dt (E;"_EN)D : (EN'V × HN)D -4- (E_-,SE)D

( Z+[HN]-n-× IE,,])+ rE_, - /k x dx
o Y_:TF-- '

( )2dr (H_"PH_'_)D = -(H_,_,V x E_) D + H_,S H D

- ],D7-"; (.- × .× I','t )
Addition of the two contributions application of the divergence theorem and standard ve('tor identities yields

dE_'dt =_D(1 - T)ft -(H_, x E_)

(_'+ z+ )+7- -_-E N • (i_- × H:,+) - --ff-H_. (it- × E%)

1,, )-_ _ ._. (,i- × (,i- × [ENI))+ ? _ (,i- × (,i- × [HNI)) d_

D /D

To understan(l the stability of a colnlllOll edge, it suffices to consider the ('as(' where S/-: = S H = {}. A{hling

the contribution from two e(tges, utilizing that n- = -r_ +, yields

dttt E:._O(1- v} (h- " H;' x E_- - h . H+ x E+_)

T

+z[EN]- n- x/t- × [EN] + ?[HN] •/t- × n- × [H_,_] dx

=- _D(1 - r)/_- • (H + x E_,_ - U_, x E_)

7- ^_ T

2In × [EN]I_ - _l,i- × [HN]I" d_ .

A sutfi{:ient condition for this to be negative is

<1- 7-}((n;,)" R_; -(n;,)" RE;,,) +

r ,' ", 7 ?[HN] R R[Hx] _> 0._[EN] R R[Ex] + f 7' T W

17



+ - +
Inspection reveals that by defining q = [EN, EN, HN, HN] T, the condition may be expressed is given aus a

symmetric quadratic form, i.e., it suffices to choose 7 such that all eigenvalues of A are non-negative. Leaving

out the length), and purely algebraic manipulations, we consider the resulting two sets of eigenvalues of A

given as

and

7 4- 1 J4r2 +Z(r 1) _ ,
A1,2 = 0 , A3,4 : Z 2Z

r +_V/472+I=(T-1)2A5,6 = 1=,

Clearly, the choice of r = 1 is the only feasible solution that ensures stability of the upwind scheIne used for

connecting the elements. 17

With these results in place, we can now state

THEOREM 4.5 (Global Stability). Assume that a unique solution to Maxwell's equations exists in the

general domain, f_. Assume furthermore that the bounda_?1 of f_ is either periodic or terminated with a

perJectly conducting boundary.

Then the semi-discrete approximation to Maxwell_ equations, Eqs.(22)-(23), is globally stable in the

sense that

provided only that

T_I .

Ptv@ As each face is counted only once, the result follows directly by summation over the all the faces

and the al)plication of Lemma 4.3 and Lemma 4.4

d E < Z (EN,SE

k

<_C E+ + ,

,)

using that (EN,S E) < C(]]EN]]_) + S E ;), I]Ex[ID < C(EN,e_EN)D since e > 1. A similar line of

is applicable for (HN, sH_ and the result, on global stability follows. 17reasoning
k ] D

4.4. Convergence. Having established consistency as well a_sstability in equivalent norms convergence

follows directly from the equivalence theorem with a bound on the local error

cD(t) = liE(t) - EN(t)IID + Jill(t) - HN(t)IID ,

of the form

( /0'cD(t) _<Ce _' ¢D(O) + [tTq(s)llD ds )
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and global convergence is hence established up to exponential growth in time as is typical for Lax-type

stability results.

As it turns out, however, we can do better and recover a sharp bound for tile growth in time by

generalizing ideas first put forward in the context of finite difference methods [34]. To realize this, let us

make the natural split of tile elementwise error as

cD < (lIE - PNE]ID ÷ IIH -- PNHHD) + (IIT'_,E - Exllo + IIP_,'N - HN[Io)

=ED+_ ,

where c_ is due to the error introduced by the polynomial approximation of the exact solution while c_

measures tile errors associated with the semi-discrete approximation of Maxwell's equations.

To b6und c_ we need only recall Lemma 4.1 to state

LFMMA 4.6. Assume that q = [E, H] T E WP(D). Then there ez:ists a constant, C, dependent on p and

the angle condition of D, but independent of q, h = d/am(D), and T_, such that

IIq - P,vqllo < C h_ [Iqllw,(Di
-- II p

where o = rain(p, n + 1) and p >_ O.

To arrive at a bound for c_), let us first consider the projection of the truncation error, 7_\_T q =
" H 7'
PNT E,'pNT ] , on the form

J

=(Li,_-N_" x H - _NV x _NH)D

1
(L,,,_ x (Z+V'NH] --/_ x [_-_E]))6 D

Z

/ \

(26) x ,Nv xD

1 (Li,it x (-)'+[7_xE] -/t x [T'NH]))6 D
1"

This is derived by introducing 7)Nq into the semi-discrete scheme, Eqs.(20)-(21), exploiting that q satisfies

Maxwell's equations, Eq. (3).

The projection of tile truncation error (:an be bounded by the exact solution as

LE.MMA 4.7. Assume that q = [E, H]'r 6 WP(D),p > 3/2. Then there e_:i.st.s a constant. C. dependent

on p, the angle condition of D and the local material properties, s,.,lt,,, but independent of q, h = diam(D),

and tt, such that

where t7 = rain(p, t_ + 1).

llPNTqIID < C_ Ilqllu'_(Dl
-- ,llp--;_t" 2

Pro@ We need only establish the result for "_'NT E,_ Eq.(25), as the derivation of the result for DNT tc

following identical lines.
E

As 7:'_x,TIc C P:_,,= y_.j T)Lj(x) we can multiply, fi'om the left with Tj and sum over all the nodes to

re('ovcI'

19



-'
Z _

Using the Cauchy-Schwarz inequality and the estimate [25]

n

IIqNII6O <--C_ tlqNIID ,

for all q C P3,(D), h = diam(D), we recover

(27) 1)NTE D <C111_ON_'7 X (H -- _NH)I[D

., 1 IIz+[_xHT]_ [_xET]I[aD+C'-'_2

where we for simpli('ity have introduced the tangential components

E,-=i'txE , HT=nxH .

To bound the first term we invoke Lemma 4.1 to obtain

ho--i

(28) II_'>,x- x (H - ;ONH)IID < I1_-x (H - i°NH)IID < C-- i- IIHIIw_(D) -
__ __ 71 p --

Consider now terms of the type

II[_NETIlI_D< II_NE+ - E+II_D+ IlVxE; - E;II o ,

where E + = E_- = E_ represents the exact, solution at _D. Recalling the trace inequality [35]

(tlqlIND< C llqllD IIVqlID +/'-_ Ilqll , q E WI(D) ,

implies that

IIq- _NqlI_D < O (llq- _NqlIDIIq-- _'NqlIw,(D_ + h-' IIq- _NqllD) ,

and we recover by combination with Lemma 4.1 the bound

hZ-l/2

II[_ NE_]II6D < C_ IIEIIw_(DI

Combining this with Eqs.(27)-(28) one obtains the result

:PNTE o h_-I h_-' ( )_<C,--,,,,__IIHI[w,(D/ + C.,--_,,_,_3/.,.[IEIIw,IDI + IIHII,.,.,/DI ,

where (CI, (72) are independent of h and _ but (7._,depends on the local material properties (Z +, }'+).

The result for 7_NTH O is recovered in the same way, yielding the result

It"- J It"- [
/_NTH t) < C_ IIEII,_,,,(D) + C_ (IIEIIw,,(Dt + IIHIIw,(D_) ,

2O



hence establishing the stated result, gl

Let us now return to the original quest for an improved convergence estimate and consider the error

equation

(0 )(29) Li,e-_ (PNE -- EN) =(Li, T'NV x (PNE -- EN))D
D

1
+---- (Li,Ct x (Z+[7_NH - HN] -/t x [_NE - E_']))_ D

Z

+ (Li, ;ONTE) D

for the electric field and similarly fi)r tim magnetic fi@t

(Li,P_--_(T)NH-HN))D(30) =- (Li, T_NV x ('I:',_,H - HN))D

1 (Li,/t x (I_+[_NE--EN] +/t x [Ps, H-H_,_]))8 D
I"

The combination of these ext)ressions with Lemma 4.7 and the methodology of the stability proof in Sec.

4.3 yMds the improved convergence result

THEOREM 4.8. Assume that a solution, q E WP(D), p _> 3/2 to Maxwell's equations in f_ = Uk Dt

exists. Then the numerical solution, qN, to the semi-discrete approximation Eqs.(22)-(23) converges to the

exact solution and the global error, _. [Iq - qNllo_- is bounded as

Ilq(t) - qN(t)llD_ _<C_-_ (llq(t) -/:'Nq(_)IID*
k k

+ II_Nq(0)- qN(0)IID*"+_ ma× IIT"(.,)IID,._
._c[0.d /

• \._ IIq(0)llw_D,)+ t_ max IIq(.")llv,_-- n p-'_/2 sE[O.t] D_)

where C depends on the material propetlies and the angle conditions of the elements but not on h and n.

Pro@ Since T)N E - EN C Pl _, and PNH - HN E P_ we (:an use these as elementwise test functions in

Eq.(29) and Eq.(30), resi)ectively, to ot)tain

1 d

2-_((_PNE -- E_,, z(T'NE - Etv))D + (:PNH - HN, zfT'NH - HN))D)

=q_ (it. (_-xH- HN) x (PNE- EN)
g5 D

1

+2(1).,,.E - EN) . ¢t x (Z+[/:'NH - H,,,:] - n x [T',_,,E - EN])

E,,, ÷
where we have employed integratioll by parts once. Following the approach of Lemma 4.4 we sum over all

the faces to obtain
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ld
2 _E ((PNE - EN,¢(?PNE -- EN))D_ + (?PNH -- HN,c(PNH - HN))D_ )

k

_<- ÷ -
k

k

Note that since e and p are uniformly bounded away from zero tile material weighted energy norm is L _-

equivalent. Furthermore, the term associated with the jump at the element interfaces is strictly negative

and we recover the bound oil the error

ld

2dr _--_IIPNq--qN[I_ < C _ff__,(_Nq -- qN, 791VTq)D_ ,
k k

which, by using the Cauchy-Schwarz inequality and integration in time yields the result

[l_Nq(t)--qN(t)l[D_. <_ C _ (ll_Nq(0)- qN(0)ND _, +t sE[0,t]maxI[_NTq(_s)[[D_,)
k k

Now combining this with Lemma 4.6 and Lemma 4.7 establishes the result and proves convergence on weak

assumptions of local, elementwise smoothness of the solution. 0

We have hence established the semi-discrete result that tile error can not grow faster than linearly in

time and that we can control the growth rate by increasing the resolution. As we shall verify in Sec. 5 this

linear growth is a sharp result. However, the computations shall also yetiS" that we can expect that the

growth rate approaches zero spectrally fast when increasing tile order of the apt)roximation, 7t_,provided the

solution is sufficiently sInooth.

Prior to that, a few comments are in place. A rigorous generalization of the results obtained above

to cover situations with general curvilinear elements and/or spatial variation of the materials within each

element is not straightforward. This is due to the generation of higher order polynomials from tile products

of the individual polynomial expressions of the fields, the materials and the geometry. One can, however.

gain an intuitive understanding of how the geometry and nmterial variations may impact the accuracy by

assuming that the polynomial representations are not of the fields only but rather of the combined functions,

v/if(vr_%E, v/-_rH). In this case, we are working only with 7_-or(ter polynomial expansions and one can expect

that the overall picture from the results derived above will hold al)proxirnately fi)r these new functions.

Hence, where we originally had an 7Fth order llolynomial to represent the fields, (E, H). we are now left

with an n'th order polynomial to represent the combined variation. One consequence of this is that we loose

accuracy when considering only the fields as we essentially have to share the resolution power between the

fields, the geometry ms well as the material variation. In particular, if the element is strongly distorts,d,

i.e., J varies significantly, one can expect loss of accuracy as coml)ared to the straightsided approximation.

Provided, however, that tile geometry is smooth, i.e., .l nonsingular, and the local material variation is

smooth, spectral convergence is preserved.

4.5. Convergence of Divergence Error. In the absence of sources, it is well known that the electric

and the magnetic fields must remain solenoidal throughout the computation. An assumption to this effoct

was indeed imposed by choosing to solve only Maxwell's equations on the form Eq.(3) and considering the

divergence conditions as consistency conditions on the initial conditions. However, given that we can not
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expect to recover the projection of the analytic solution but rather will compute a different, albeit convergent,

solution we need to ('(resider the divergence of this numerical solution to justify the original choice of solving

Eq.(3) only.

Using the results of Sec. 4.4 we can state

THEOREM 4.9. Assume that a solution, q 6 WV(D), p > 7/2 to Maxwell's equations m l_ = Uk Dk

exists. Then there exists a constant, C, dependent on p and the angle condition of D _', but independent

of q, h = diam(D), and n, such that the divergence of the numerical solution, qN, to the semi-discrete

approximation Eqs.(22)-(23) is bounded as

_--:_IIV - qN(t)llg_ _<C _--_ ( h_-I h_-e )k.n_:T-_Itqllu,,iD") +t_ max IIq(s)llwpiO,, ) ,,E[o,t]
k k '

where cl = min(p, Tz+ 1) andp > O.

Proof. Considering the local divergence of H on any D we have

IIV. (H - H,'v)IID _<I1_ (H - "P,,,,H)IID + IN" (I>N H - H_,')IID

The first term we can bound immediately through Lemma 4.1 as

]_(r-- ]

IIv-(H - r'_vH)llo < C--IIHIlu,,,(g)
-- 'It p- l

where a -- rain(p, n + 1) and I9 _> 1.

Utilizing the inverse inequality [25]

17 2

IlV" u_'ItD _< 7-, IluNIID ,

for all uN 6 P_(D), we can bound the second term as

112

IIV" (79,_,'H - HN)J[D _< C--_ [[T'-.n'U - HNItD
9

n- T'" TH O< Ct-- max (t)
- h _[o,t]

h_-'-' max (llE(s)llw,(D)+ IlH(s)Ilu.,,(D))<_ Ct_ .<[.,t]

t)y combining the results of Lemma 4.7 and Theorem 4.8. An equivalent bound can 1)e ot)tained for the

divergence of E_, in the case of a source free medimn which, combined with the above, yields the result. Iq

As could be exl)ected, the result inherits the temporal linear growth from the convergence result and

confirms the possit)ility of recovering spectral convergen('e of the divergence under the assumption of sufficient

smoothness of the solutions. It should t)e noted that wlfile the result confirms high-order accuracy and

convergence, the estimate for the actual convergence rate is almost certainly suboptimal and leaves room for

inlprovelllent.

4.6. Entr'aete on the Scattered Field Formulation. Let us briefly return to an analysis of the

scattered field formulation discussed in Sec. 2.1, with the modified scattered field equations given in Eqs.(7)-

(8). We recall that we split the solution, q, as

q=qS +qi ,
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and exploit the linearity of Maxwell's equations to solve for the scattered field, q*, subject to the forcing by

the incident field, qi. As discussed in Sec. 2.1, this does not alter the scheme in any significant way except

at metallic boundaries where the boundary condition on the electric field component takes the form

n XEN + =-nxE_--2T'NE i

in tile notation of Lemma 4.4, while the boundary condition on the magnetic field remains

s,-

n × H_ "+ = n × H N

Since this constitutes the only difference, we can restrict the subsequent analysis to the case of a metallic

object in vacuum without loss of generality as all ()tiler complications are covered by the analysis of the total

field scheme.

It suffices to consider tile behavior of the computed solution which can be bounded as stated in the

following.

THEOREM 4.10. Assume that a scattered field solution, q* E WV(D), p _> 3/2 to Maxwell's equations

in i_ = Uk D_" exists, and that the incident field qi E IVP(D), p _> 3/2. Then the energy of the numemcal

scattered field solution, q_., to the semi-discrete approximation of Eqs.(7)-(7) is bounded as

tlq'_(OIID'_'_c _--_(ll Nq'(t)llo, 
k k

"° )+ II_'NN_(0)+ qN( )tlD_+ t maxIIT_,'(,_)llo_.

where C depends on the material properties and the angle conditions of the elements but not on h and n.

Proof. The proof proceeds in a way very similar to that of Theorem 4.8. Combining the equation for the

scattered field solution, qsN, with the equation describing the projection of the incident field, T'Nq i, summing

over all the faces and using q_ + 7:)Nq i as the test function we recover

1 d ,, s 2
2 dt _, IIqX_+ _',_q_lt_ -<- _ H[r'Nq_+ qN]llD_

k Interior Faces

s 2
-4 _ II[_'NE_+E_]IID,.

DEC Faces

+ Z (_f)Nqi q-qX"'lgNrqJlD_ '

k

where the dissipative terms are gathered over the interior and PEC faces separately due to different boundary

conditions, while the global sum involves the truncation error, T'NT q'i, associated with the projection of _he

incident field.

This latter term can be bounded as in Lemma 4.7

h,,,-- 1

II_'NT_'illD __c_ IIq'll,,,,,,o,,

where a = rain(p, n + 1).

Proceeding as for Theorem 4.8 we subsequently recover

2,1



fl'om which

Z I[q?z(t) + PNq_(t)IID" <--CZ Ilq;k;(0)+ P_:q+(0)IID,"
k k

+t maxZ II NT'"( )IID"
,_c[0.¢] k

Ilqf,_(0llD,._<C_ IIP,,,q'(t)llD,.
k k

+Z IIq;, (o) + t max5-"
_. _e[0,tl"T/

thus establishing the result. []

Hence, also the scattered fields remain bounded up to linear growth in time. An interesting diiference

between this result on that of Theorem 4.8 for the total field formulation is that the accuracy and growth rate

of the former is controlled solely by the smoothness of the incident fieht with the potential for exponential

convergence for sutiicient.ly smooth ilhmfinating fields.

5. Validation and Performance of the Scheme. Having developed the complete formulation for

the time-domain solution of Maxwell equations, supported by a thorough convergence analysis, it is now

time to consider the actual performance of the computational framework.

In the following we shall discuss the validity of the main theoretical results through a few examples

as well as exemplify: the versatility and overall accuracy and performance of the comt)lete flamework for a

number of benchmarks. Temporal integration of the senti-discrete approximation given in Eqs.(20)-(21) is

done using a 4th order, 5 stage low-storage ttunge-Kutta scheine [36] and a st.ability limited time-step scaling

as

At < CFLmin _IXI -L

with _ reflecting the modified local speed of light due to materials and

IVd IV,/I Ivq
z= a-Z+ +

Here [-] refers to the absolute value of each and of the vector components, i.e., [V([ = [1_.,.I,I_._1,I_=1]r.

Hence, X provides a measure of the local grid-distortion as a consequence of the mapping, @, of I into D. and

(A(, AT/, ..iX() measures axial distance separating neighboring nodal points in I. In this setting CFL typically

takes values of O(1) while the time step, At, scales as At __ l/n 2 where 1 is the nfinimum edge length on all

tetrahedra and 7_ is the polynomial order of the approximation.

As a general measure of error we shall use the discrete LP-norm of the error defined as

1t6.f(011p= [L,, (xJ, t) - .f(_}, ,)]"

where fN (x, t) is the immerical approximation to the exact value, f(x, t) summed over all nodes, j, within

each of the k elements.
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FI(:. 3. In a) is shown the temporal envelope of the maximum error on H_(t) in the two-dimensional cavity for different

orders, n, of the approximation. The slope of the linear growth is" plotted in b), confirming spectral convergence as predicted

in Theorem 4.8.

5.1. Elementary Tests and Verification of Theoretical Results. As a first verification of the

theoretical estimates, and in particular the linear growth predicted in Theorem 4.8, we consider the solution

of the two-dimensional Maxwell's equations in the TM-polarizatiom i.e., we solve for (Hx, Hy, E:). There

is, however, nothing special about this polarization.

The computational problem is that of a simple two-dimensional vacuum filled cavity, assumed to be

defined by (x,y) E [-1, 1] x [-0.25,0.25], with the walls at x = 4-1 taken to be perfect electrical conducts

while the cavity is assumed to be periodic in the y-direction. The initial condition is a simple oscillatory

cavity solution as

H,(x,y,0)=0 , H,(x,y,0)=cos(_x) , E-(x,y,0)=0 ,

and the computational domain is discretized by 8 equivalent isosceles, each with 0.5 wavelength long sides.

In Fig. 3 we show the temporal envelope of the maxinmm error of H_(t), computed using the same

eight elements while increasing the order of the approximation. Following the main result, Theorem 4.8, we

expect that the error can grow at most linearly in time and that the growth rate should vanish spectrally for

smooth solution. The results in Fig. 3 not only' confirm the validity of both statements but also illustrates

that Theorem 4.8 is sharp, i.e.. we can not in general guarantee slower than linear error growth, although

we can control the growth rate by the order of the approximation.

To further evaluate the performance of the scheme, let us briefly consider the behavior of the divergence

and the ability of the schcme to propagate waves over long distances. For this purpose we shall continue to

consider the propagation of plane waves in simple rectangular domains, tiled using isosceles, each with an

edge length of 0.5 wavelength. In Fig. 4 we show the global L2-error of the divergence of/-/for a plane wav('

propagating in a fully periodic domain being 2 wavelengths long and 0.5 wavelength wide, tiled using only 8

triangles. Consistent with the theoretical result in Theoreln 4.9 the scheme preserves the divergence error t()

the order of the scheme, i.e.. the error vanishes spectrally as we refine the order, n, of the approximation. The

very notable even-odd behavior in the convergence is a consequence of the alignment with the triangulation.

The ability to propagate waves over very long distances is likewise illustrated in Fig. 4 where we also show

the L2-error of the H,j component. Contrary to the small problems considered first, we are here considering

a 200 wavelength long domain and with the exact solution being use to truncate the computational domain.

The domain is tiled using isosceles with an edge length of 0.5 waveh,ngth and a total of 800 elements. \Ve
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FIG. 4. In a) is shown the global L 2-error of the divergence of H for a plane wave propagating in a fully periodic domain

as a function of time and order of approximation, n, confirming that the scheme conserves divergence to the order of the

approximation, i.e., it de.caw spectrally with ine_asing polynomial order. The Le-error of H_ as a function of time and order

of approximation, n, in a 200 wavelength long doraain is shown in b), confirming the ability to propagate wav_s over very long

periods of time using only few points per wavelength.
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Jr II 1 11 II I III II1[ i_ IIi, I '1 II, i' _, ,' _, _
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i
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lime

1>1(;. 5. In a) we illustrate the prism tiled using three high-order tetrohedra while: b) illustrates the maximunz of tt.,. for a

(y, z )-polarized plane wave propagation as a function of time and order of the approximation, n. confirmin.q spectral convergence

for the three-dimensional ease.

observe in Fig. 4 an expected slow error growth until t = 200 afl,er which it settles at a maxinmm error

level. This level, however, decays spectrally as we increase the order, n, of the al)proxinmtion. Using as a

guideline that two edges span a wavelength, we see that with 7 points per wavelength (two 7_= 3 triangles)

yields about I(YX. error, only 9 points per wavelength (two n = 4 triangles) results in about 1_: error while 11

points per wavelength (two n = 5 triangles) ensures about 0.1_ error after 400 t)eriods. This is a testament

to the advantage of using a high-order framework for wave propagation problems.

Let us finally consider a simple three-dimensional test case in which we have tiled a straightfaeed prism

using three straightfaced tetrahedra as illustrated in Fig. 5. The test is that of a plane wave t)ropagating

through the prism with the exact, solution being used as the boundary conditions. As shown in Fig. 5 we

recover a rapid exponential convergence as the order, n, of the at)t)roximation is increased.

5.2. Two-Dimensional Examples. Having verified the l)erformance of the basic comtmtational setup

as well as the theoretical estimates, let us now consider problems of a less simple and more realistic character.

This shall not only allow us to illustrate more general features of the proposed framework hut shall als() I)(,
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FIG. 6. In a) is shown the finite element grid, consisting of 854 triangles, used for computing scattering by a perfect

electrically conducting cylinder of size ka = 15rr. A section of the grid in b) illustrates the bodyconformin9 nature of the grid

and the nodal grid supporting the high-order approximation.

used to veri_' that all the propertie_ of the high-order unstructured grid approach, seen so convincingly in

tile last section for simple exa,nples, carry over to tile solution of more realistic problenls.

We shall focus the attem_tm on problems described by the two-dimensional TM-polarized Maxwell's

equations on the form

(31)
OH_ OE:

"' o--V=- o-V
OH. OE:

#" Ot - Ox

OE= OH u

Ot

OH.r

Ox Oy '

suhject to boundary conditions between two regions with nmterial parameters, sl} '1 and p_}'), for k = 1 2. as

h x H (_) = h x H 12) ,

E[ _)= E!21

Here H (_') = (H(k), H(k)v , O) T and ¢* = (hr,. hu, O) r represents a unit vector normal to the interface. For the

case of a perfbctly conducting metallic boundary the condition becomes particularly simplc_ ms

E2 _ 0 •

The computational domain is truncated with a Cartesian PhIL [37] using a quadratic absorption profile.

It is worthwhile emphasizing that results of equal quality and overall accuracy as the ones shown in t he

following for the TM-polarized case has been obtained for the TE-polarized case.

As a first examt)le we consider that of plane wave scattering by a perfectly conducting circular cylinder

with a radius ofa = 7.5t, i.e., ka = 15rr. The surrounding medium is assumed to be vacuum, i.e., c r = #r = 1.

The finite element grid, consisting of 854 triangles, utilized for this computation is shown in Fig. 6 along with

a section of the grid illustrating the full bodyeonforming nature of the approximation as well as the nodal grid

supporting the high-order approximation. Maxwell's equations are solved in the scattered field formulation
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FI('. 7. In a) is shown the bistatic radar cross section f_(/,'_'{0), as eompuled using the exact series reprt_sentatiot_ as well

as the unstructured grid method at different polynomial ord_rs, n_ Evzdence of high-order convergence for the: R(',S'-computation

is given in b) showing exponential decay of the error in RC:,'_'(dBm) with increasing order of t,he_ approximat, ion.

and Prony extrat)olation [38] is used to reduce the required computing time to reach the harnionie steady

state.

In Fig. 7 we compare the computed bistatic radar cross section, RCS(0), with the exact series solution

[39], for various orders, n, of the approximation using the fnite element grid illustrated in Fig. 6. As

expected we ()|)serve a very rapid convergence with increasing n, yielding a reasonal)]e engineering accuracy

computation with the 4th order scheme while increasing the order to n = 8 results in a t)erfect mat.oh. A

quantitative confirmation of this is also shown in Fig. 7, illustrating the expected exponential convergen(:e

of the RCS with increasing n.

One of the most appealing advantages of a high-order framework on simpliees is the ability to import

a strongly skewed finite element grid and recover a fidly converged solution |)y increasing the or(ter of the

at)proxiniation rather than having to reconstruct an iml)roved finite element discretization. This prol)erty

is particularly important and useful for large three-dimensional problems where the grid generation phase

can t)e very complex and tixne-consuming. As an illustration of this at)preach to convergence, we consider

in Fig. 8 the plane wave scattering from a PEC eylinder with a radius of one wavelength, i.e.. k(i = 2_. The

measure of accuracy and convergence is based on the observation that the symlnetry of the l)rol)leni makes

one ext)ect the scattered fields themselves maintain a high degree symmetry.

This is indeed confirmed in Fig. 8 where we show a deliberately chosen poor grid and the rat)id recovery

of the symmetry of one of the scattered field components, H,, as the order, n, of the approximation is

increased without modifying the underlying finite element grid. The detail to which the symmetry is restore(t

is l)artieularly noteworthy.

As an illustration of the capability to handle materials let us consider plane wave scattering I)y a pene-

trable circular cylinder with a radius of, = 3.5A consisting of an ideal dielectric with _,, = 2.0, i.e., similar to

that of glass. The t)rot)lem is again solved in a pure scattered field formulation and the filly I)ody-conforming

finite element discretization, consisting of a total of 1020 triangles, is illustrate(t in Fig. 9. We note that

the at)sort)ing PML layer, (:ontaining at)out 2/3 of the total aillOUnt of triangles is lmnecessarily thick for

illustration only and can t)e (tecreased without loss of accuracy.

As is likewise illustrated in Fig. 9 we recover the full bistatic radar cross section, RCS(0), with excellent

correspondence to the exact solution [40] and quantitative agreement over a 40 dl) dynamic range.
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FIG. 8. Example of convergence by increasin 9 the order of the approximation, n, on a deliberately chosen highly skewed

fi_ite element grid, illustrated in a). The convergence is illustrateM in b)-f) for increasing the order from 4 'th order to 12'th

order, showin9 a complete _covery of the expected symmetry of the scattered field component, Hx.

5.3. Three- _nensional Examples. As a first verification of the general three-dimensional frame-

work, let us const,,er plane wave scattering by a ka = 10 perfectly conducting sphere, the analytic solution

of which is given by a Mie-series [39].

We use a fifily bodyconforming grid with a total of 3000 elements, having an average edge length at the

sphere of 4)_/5. Contrary to the two-dinmnsional case where we use(t a PML to truncate the computatio_,al

(tomain we choose in the three-dimensional case to embed the sphere in a (20A) :_cube and employ stretching

of the elements as one approaches the outer boundary. The grid is stretched such that the average edge is

about 2A at the outer boundary. As in the two-dinmnsional case, all examples are (|one using a 4th order
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F'](;. 10. Plane wave scat_erin.q by a ko = 10 metallic sphere for a fixed grid and increasin.q or_ter, n, of th.e pol.qnon_ial

approximation. In a) we show the convergenee of tt(,'S(O,O) for vertical polarizalion (TM), while b) shows I_(,',5'(0,90) fi_r

horizontal polarization (Tlg) of the incident .field.

low-storage Runge-Kutta scheme to advance in time and Prony extrapolation to identify the s(_lution.

In Fig. 10 we illustrate the convergence of the scheme with a fixed grid when increasing the order of

the approximation within each tetrahedron. Even for _t = 3, i.e., a third order scheme with about 5 points

per wavelength, do we compute a reasonable solution whih" increasing the order yMds a rapidly converging

solution as one would ext)ect.

As a considerably more challenging problem, let us consider scattering by a perfectly conducting business

card sized metallic plate ms illustrated in Fig. 11. The horizontally polarized plane wave impinges at the

metallic plate at an almost grazing angle, causing the excitation of very strong waves along the edges of the

metallic plate. These waves contribute dramatically to the scattering 1)recess and need to be resoh,ed to

accurately predict the far fieht scattering.

This prot_lem, being one of the EMCC benchmark probh,ms [41] for code validation, is addressed by

using a total of 27000 straightsided tetrahedra, each supporting a 4th order polynomial approximation. The

average edge length at the edge of the business card is approximately A/5. The metallic plate is embedded

in a (20A) :_ cube, with the elements being stretehe(l to about 4A at the outer b(mndary.
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FIG, 1 1. In a) we show the geometry for the plane wave scattering by a metallic business card while b) shows the comparison

between monostatic RCS experimental results [_1] (full line) for horizontal polarization of the illuminating field and particular

computed data points (.).

In Fig. 11 we also show tile (:¢)mparison t)etween the experimentally measured monostatic RCS [41] and

a number of particular computed data points. Again we observe good agreement over tile full azimuthal

range with results well within the experimental error. The most significant discrepancy of a few dB for 0 _ 0

is consistent with other published results [41].

As a fnal example of the performance of the three-dimensional framework we shall consider plane wave

scattering fronl a dielectric cylinder of finite length. As illustrated in Fig. 12, the length of the cylinder is 5A

and the non-magnetic material has a permittivity of c,. = 2.25, similar to that of glass. Clearly, the nature

of the fields is less dramatic than in the previous case and we find that using a total of approximately 67000

elements, supporting a 4th order approximation and with an average vacuum edge length at the cylinder of

A/3, suffices to accurately predict the far field scattering. The full (:omputational domain is a cylinder of

radius 16A and length 23,k with the stretched elements having a average length of 4A at the outer t)oundary.

In Fig. 12 we show a direct conlparison between the full bistatic RCS for a plane wave impinging directly

at the end of the cylinder as computed using the current framework as well as an independently verified

pseudospectral multi-domain axi-symmetric code [12]. As expected we find an almost perfect agreement

between the results of the two schetnes over approximately 50 dB dynamical range.

5.4. Parallel Performance. The discontinuous element fornmlation of the scheme enables a highly

efficient implementation at contemporary large scale distributed memory machines. While this is a lesser

concern for the two-dimensional schemes, it is essential to enahle the modeling of large scale three-dimensional

problems.

The developed schemes are implemented in a combination of Fortran and C with all computationatly

intensive part written in Fortran and taking advantage of Level 3 BLAS [42] where possible. The parallel

interface is written in MPI [43] with METIS [44] used to distribute the elements over the processors. To

ensure high cache efficiency, we employ bandwidth minimization [45] of the nodal points locally to the

processors [46]. For computations maximizing the capacity of the processors, i.e., filling the local memory.

this is critical to ensure high performance.

In Table 1 we list the parallel speedup relative to the n = 2 ease as the number of processors are

increased. A few things are worth noting. For a fixed size problem, the parallel speedup decreases slightly

as the number of processors increases which is natural as the relative conununication cost increases. ()n
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TABLE 1

Parallel speedup for a 123.000 element 9rid, sealed to timing for n = 2 on ,_ processors (- implies insud_cient mem, or?l

local to the nodes).

Polynomial Degrees of Number of processors

order (n) freedom (x 106) 4 8 16 32 64

2 7.4 1.0 2.0 3.9 7.5 13.7

3 14.8 - 0.9 1.8 3.5 6.4

4 25.8 - 1.0 1.9 3.6

5 41.3 - 0.8 1.6

a) b) _o

7

£=2.25 _ _o

o
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FIG. 12. In a) we show the .qeometrfl for the plane wave scattering by a dielectric finite length cylinder while b) shows

the RCS(O O) for vertical polarization (.) of the! illuminating field and RCS(g..90) for horizontal polarizalion (.) compared with

results obtained using a pseudospectral axi-symmetric code (full line) [12]

the other hand, for problem sizes utilizing the available resources we find a very high paralM efficiency,

e.g., increasing the problem size and the number of processors yields a close to constant speedup. The data

also show a minor decrease in relative performance h_r high order on many processors, which we speculate

is related to cache effects known to bc become important as the size of the operators increase [29]. We

generally observe better than 907_ parallel efficiency, consistent with other similar studies [47].

6. Concluding Remarks and Outlook. The main purpose of paper has been to introduce the reader

to a new class of high order unstructured grid methods suitable for the time-domain solution of Maxwell's

equations. A number of central elements separate the current framework from previous attempts to develop

high-ordex accurate methods on unstructured grids. The use of a purely nodal basis has a number of

advantages in terms of ease of implementation by simple matrix-vector operations as well as the promise

to yieht a highly efficient implementation. Furthermore, the generalized discontinuous penalty scheme was

introduced, offering an inherently parallel discontinuous formulation with a purely block-diagonM mass

matrix which can be inverted in t)reprocessing.

The particular focus on Maxwell's equations allowed us to develop a complete, if not optimal, convergence

theory. A similar analysis can be comi)leted for other classes of linear prot)lems such as acoustics and linear

elasticity. We have confirmed the results of the analysis by thorough comt)utational experiments, illustrating

the flexibility, versatility, and efficiency of the proposed high-order accurate unstructured grid framework.

While we have focused on linear systems in general and Maxwell's e(tuations in particular, the central

elements of the framework allows for nlore general formulations that enable the solution of typical nonlinem"
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systemsof conservationlaws. Thisnaturallyraisesquestionsaboutproperformulationof thefluxesat
interfaces,conservation,entropysolutionsandstabilityofhigh-orderschemeswhenapproximatingproblems
with discontinuoussolutions.Weshalladdresstheseissuesin [30]whereweshallalsodemonstratethe
perfl)rmanceof suchgeneralizedformulationsfor thesolutionofconservationlaws.

Acknowledgment.Theauthorsextendtheirappreciationto Prof.D. GottliebandDr. A. Ditkowski,
BrownUniversity,formanyfruitful discussions.

Efficient and Accurate ImplementationTechniques.Fromthediscussionsin See.3.2it is clear
that theVandermondematrix,V, playsacrucialrolein settingupthediscreteoperatorsfor interpolation
anddifferentiation.ThepropertiesofV,e.g.,its conditioning,dependsexclusivelyoil thestructureofnodal
set,_j, an(lon thewayinwhichwechooseto representthebasis,i.e.,pi(_). While the foriner is chosen to

ensure well behaved Lagrange interpolation potynonfials, we have significant freedom in tile specification of

p_(f).

A particularly simple choice is that of the multivariate monomial basis, i.e., Pi(_) = _i_lJfA'. However.

even for interpolation in one dimension, i.e., pi(_) = _', is it well known that this basis leads to the cla_ssical

Vandermonde matrix with an exponentially growing condition nuInber. Hence, even for moderate vahms of

n. can we expect severe problems when attempting to coml)ute the action of V-1. Tile well known solution

to this problem is to choose a basis that is orthonorrnalized with respect to some t)roper inner tlroduet to

assure the maxinlum degree of linear independence of the basis.

Such a basis has been known for long [48, 49, 50] and takes tim form

(32)

where

'+.1 p(2i+2j+l,O) (,)v"_, (_) = g(o,o)I_) pj,-,+,,ol (_) . _: ,

2(1 + _) 2(1 + '1)

r- 'II+( 1 , s- 1-( 1 , _=( ,

and P,(,(_'L_)(x) signifies the classical Jacobi polynomial of order n [51].

_I'he tensor product structure of the basis, Eq.(32), becomes evident when one realizes that while { is

restricted t)y I, the mapped coordinates, (r,s,t), covers [-1, 1]3. Furthermore, it is easy to see that the

l)olynomial space P_ can expressed a_s

Pan = span{'_,ijk({);i,j,k > 0;i +j + k < n}

An important property of the basis, E(1.(32), is its orthogonality on I [21] as

'_. (_i)W,,,_ "y,_.a__k,v,,,. ,(_) d_

where &_t',vq_ is the multi-dimensional Dirac delta and the normalization is

2 22i+e 2')(i-t-,))+3

"Y0k= 2i+12(i+j)+22(i+j+k)+3

Let us introduce tile index, a E [0, N], reflecting some chosen ordering of (i, j, k)and hence t":'0k- We can

thus rename the polynomial basis V_0E(_) = _(5) to simplify the notation in the subsequent discussion.
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With this machinery in place, let us address how to initialize the basic operations and the associated

operators needed for solving partial differential equations with the current context ill an efficient and accurate

manner.

Using the orthogonal basis w_, itisnaturalto definethe Vandernlonde inatrixto have the entries

1
V,j = --_,j(_) .

The relation between the nodal and the modal representation of a function, f, follows directly fi'om Eq.(12)

as

S=vs, S=v-'S.

Furthermore, we can coml)ute the entries of the differentiation matrices directly by defining tim entries of

P(_"_'¢), Eq.(15), using the derivatives of _.,_(_) expressed explicitly t)y the identity [51]

d p(a,O)(f ] ---- 1 _xr)(n+l,I)_,-_

d_- " ,.,, ._(7_+ 1 + (,j,-,,_, t¢_ .

In an equally simple and straightforward way we can define spatial filtering matrices, F, as

F = Va(i.j,k)V-' ,

where the order p filter itself is defined as

N

such that filtering is accomplished through a straightforward matrix multiply at a cost equivalent to that of

computing a spatial derivative.

While the interpolation, differentiation, and filtering operators will play a crucial role in the solution of

the partial differential equations, we shall also need t() evaluate inner products on the general curvilinear

tetrahedron, i.e., we shall need an efficient and accurate procedure for computing

/(/x,gx)o --- fN(_)g,,v(_),l(_)d_ ,

where J rehws to the transformation Jacot)ian for the mapping between D and I and fN E P_, 9x E P_.

To evaluate this inner product, we exploit that fx and gN are expressed uniquely by their expansion in

Lagrange polynomials as

(fN'gN)D = E fi'qJ _l 'Li(_) Lj(_),](_)d_ .
i,j=O

Furthermore, using the basis itself, '_"'a(_), we can express the Lagrange polynomials themselves using Eq.(14)
on the form

L_(_) = y_ \'5)t,_.(_) .
k=o

This imme(tiately yields the expression
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(33)

N N

(fN,gN)[:) = Z figJ Z \:_'ilV_ 1 f _k(_)_/,,(_)J(_)d_
i,j--0 k,/=0

N N

Z figj E "r-lv-1v_r_' ki Ij kl ,

i,j=0 k,/=0

where the symmetric matrix of weights, W has tile entries

Wkl = f V)k (_)V)t (_),1(_) d_
o

dl

On matrix fornl Eq.(33) becomes

(fN,gN)D = •

For all dements we may precompute (V -t )Tw'v-1 in a preprocessing stage, storing only the upper half of

the operator due to symmetry. In the particularly important case where D is a straightsided tetrahedron,

i.e., J is a constant, the orthonormality of t',_ implies that W = JL where I represents the identity matrix.

Hence, through a simple linear scaling one recovers the weights for all tetrahedra with planar faces. For the

general case where J({) is non constant, the entries of W are computed exactly through over-integration by

product rules based on Legendre Gauss quadratures [52].

A final key operation needed for the implementation of the scheme is surface integration, i.e.,

= Jl fN(_)gN(_)J(_) d_(fN, gN)6D I

where d(_) refers to the surface Jacobian only. While one could proceed as for the volume integral discussed

above, it is more natural to exploit the uniqueness and completeness of the Lagrange interpolation. To

illustrate the procedure, let us restrict attention to one of the faces, face 'd' (see Fig. 1), and term those

N_d = ½(n + 1)(n + 2) nodes positioned at that face for t_d. Clearly, using the exact same procedure as for

the three-dimensional Lagrange polynomial discussed above, we can compute a two-dimensional Lagrange

polynomial, 1_(_, 7/) based on _d. As for Lj(_), we can recover l_l as the solution to the dual problem

(g d)T ld = pd ,

where the entries of the Vandermonde matrix is

,j = pj(tgi ) •

d
The proper basis to use is the two-dimensional version of Eq.(32) given directly as pj (_, 7/) = Y)ijo (_, rl,-1).

This allows us to proceed exactly as for the volume integration and express the integration over face 'd' as

_a_e d fN(_'tl'-l)gN(Grh-1)J(_'*l'-l)d_dTl= (('rd)-X fd)Tv_Td (vd)-I gd '

where fd = r_ it(l) .... (Its_x _g0. fx (_Nd)]T is the trace of fx at the face. A similar definition is used for gd. The

matrix of surface weights are given as

_'W_L,s= ]flc,_ d _:'i(( "t' - l )_:'J(("l' - l )J(G 'l' -l ) d_&l "
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In the important special case where the face is planar and has straight edges, orthonormality of the poly-

nomials immediately implies that W d = JdI as for the volume case. For the general case we shall use a

cubature rule [53, 54, 55] of sufficiently high order to evaluate the inner product, i.e., we need to interpolate

the polynomials, f._, and 9_', onto the M cubature nodes, _'],(_ll]) situated at the face. This is done by the

introduction of the interpolation operator

d/_-d,cub \
H=pT(vd) -I , P,j =Pi_;j _ ,

i.e., P is an N d × M operator. The evaluation of the inner product is then accomplished as

fa fr_'(_ ,I,-1)g.,'((,,/,-1).l(_,,/,-1)d_d,l= (fd) T HT\VHg 't
ce d

where the entries of the diagonal M × M matrix of weights are given as

Wii = wi Z ttik'](_'_t') '

containing the weights wi of the cubature as well _Lsthe interpolation of the transformation Jacot)ian of the

curvilinear face. While this formulation lends to the most compact scheme it proves advantageous to operate

directly on the values at the cubature nodes as they do not include the edges and vertices, i.e., we can

establish a clean face based connection between elements without considering the nmltiplicity of solutions at

vertices and the added complexity this introduces for the implelnentation and perfornlance. Needless to say,

the whole dis(:ussion for the evaluation of the integral over face 'd' carries over directly to the other faces,

hence completing th(' evaluation of the full surface integral.

It is important to realize that all the oi)erators introduced in the above can be initialized during a

prepro(:essing phase. Furthermore, it is worth re(:alling the discussion in Se(:. 3.1 in which we found that any

two straightfaced tetrahedra are connected through a linear transformation. Hence, for any straightface(l D

we can form any of the operators discussed in the above directly by a linear sealing of hard-coded template

<)perators defined on I. This saves not only preprocessing tilne but also reduces the re(tuired storage space

very sul)stantially,

REFERENCES

[11n.

[2] A.

[31K.

[4] C.

[5] D.

[6] D.

O. KRE1SS AND .l. OLI(IER, Comparison of Accur'ate Methods for the Integration of Hyperbolic

Problem,s, Tellus 24(1972), pp. 199-215.

T. PATERA, A Spectral Element Method for Fluid Mechanics: Laminar Flow in a Channel Expansion,

J. Comput. Phys. 54(1984), pp. 468-488.

Z. KORfZZAK AND A. T. PATERA, An lsoparametrie Spectral Element Method for Solution of the

Navier-Stokes Equation.s in Complex Geometries, .]. Conlput. Phys. 62(1986), pp. 361-382.

CANIIT(), N:I. Y. HUSSA1NJ, A. QUARTEI/ONI, AND T. A. ZAN(', Speetral Methods in Fluid Dynam-

ics. Springer Series in Computational Physics. Springer-\,7'rlag. New York, 1988.

A. KOPRIVA, A Spectral Multidomain Meth, od for the Solution of Hyperbolic Systems, Appl. Numer.

Math. 2(1986), pp. 221-241.

A. KOPI_IVA, Computation of Hyperbolic Equation.s on Complicated Domains with Patched and

Overset Cheby.shev Grid.s, SIAM .]. Sci. Star. Comput. 10(1989), Pt). 121)-132.

37



[7] A.

[8] D.

[91J.

[101J.

[11] B.

[12] B.

[13] J.

[141D.

[15] B.

[16] S.

[17] S.

[18] I.

[19] T.

[20] T.

[21] G.

[22] H.

[23] B.

QUARTERONI, Domain Decomposition Methods for Systems of Conservation Laws: Spectral Collo-

cation Approximations, SIAM J. Sci. Stat. Comput. 11(1990), pp. 1029-1052.

A. KOPRIVA, Multidomain Spectral Solution of the Euler Gas-Dynamics Equations. J. Comput.

Phys. 96(1991), pp. 428-450.

G. G1ANNAKOUROS AND G. E. KARNIADAKIS, Spectral Element-FCT Method for the Compressible

Euler Equations, J. Comput. Phys. 115(1994), pp. 65-85.

S. HESTHAVEN, A Stable Penalty Method for the Compressible Navier-Stokes Equations: Ill. Multi-

dimensional Domain Decomposition Schemes, SIAM J. Sci. Comput. 20(1999), pp. 62-93.

YANG, O. GOTTL1EB, AND J. S. HESTHAVEN, Spectral Simulations of Electromagnetic Wave Scat-

tering, J. Comput. Phys. 134(1997), pp. 216-230.

YANG AND J. S. HESTHAVEN, A Pseudospectral Method for Time-Domain Computation of Electro-

magnetic Scattering by Bodies of Revolution, IEEE Trans. Antennas Propaga. 47(1999), pp. 132-141.

S. HESTHAVEN, P. G. DINESEN, AND J. P. LYNOV, Spect_ul Collocation Time-Domain Modeling of

Diffractive Optical Elements, J. Comput. Phys. 155(1999), Pt)- 287-306.

A. KOPRIVA, S. L. "_VoODRUFF, AND M. V. HUSSAINI, Discontinuous Spectral Element Approx-

imation of Maxwell's Equations. Ill Discontinuous Galerkin Methods: Theory, Computation and Ap-

plications. B. Cockburn, G. E. Karniadakis, aim C.W. Shu (Eds). Lecture Notes in Computational

Science and Engineering 11(2000), Springer Verlag, New York. pp. 355-362.

YANG AND J. S. HESTHAVEN, Multidomain Pseudospectral Computation of Maxwells Equations in

3-D General Curvilinear Coordinates, Appl. Numer. Math. 33(2000), pp. 281-289.

J. SHERWIN AND G. E. KARNIADAKIS, A New Triangular and Tetrahedral Basis for High-Order

Finite Element Methods, Int. J. Num. Meth. Eng. 38(1995), pp. 3775-3802.

J. SHERWIN AND G. E. KARNIADAKIS, Tetrahedral hp Finite Elements: Algorithms and Flow Sim-

ulations, J. Comput. Phys. 124(1996), pp. 14-45.

LOMTEV, C. B. QIT1LLEN AND G. E. KARNIADAKIS, Spectral/hp Methods for Viscous Compressible

Flows on Unstructured 2D Meshes, J. Comput. Phys. 144(1998), pp. 325-357.

_VARBURTON AND G. E. KARNIADAKIS, A Discontinuous Galerkin Method for the Viscous MHD

Equations, J. Comt)ut. Phys, 152(1999), pp. 608-641.

"_VARBURTON, I. LOMTEV, Y. Du, S. SHERWIN, AND G. E. KARNIADAKIS, Galerkin and Discontiv-

uous Galerkin Spectral/hp Methods, Comput. Methods Appl. Mech. Engrg. 175(1999), pp. 343-359.

E. KARN1ADAK1S AND S. J. SHERWIN, Spectral/hp Element Methods for CFD. Numerical Mathe-

matics and Scientific Computation. Clarendon Press, Oxford, 1999.

ATKINS AND C.W. SHU, Quadrature-Free hnplementation of Discontinuous Galerkin Methods for

Hyperbolic Equations, AIAA J. 36(1998), pp. 775-782.

COCKBURN, G. E. KARNIADAKIS, AND C.-_V. SHU (EDS.), Discontinuous Galerkin Method.s:

Theory, Coutputation and Applications. Lecture Notes in Computational Science and Engineering

1, Springer Verlag. ' _w York, 2000.

[24] I. BABII_KA AND M. Sum, The hp-Version of the Finite Element Method with Quasiuniform Mesh.es,

M2AN, 21(1987), pp. 199-238.

[25] C. S(zHWAB, p- and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics.

Numerical Mathematics and Scientific Computation. Clarendon Press, Oxford, 1998.

[26] J. S. HE.qTHAVEN, Spectral Penalty Methods, Appl. Numer. Math. 33(2000), pp. 23-41.

[27] M. H. CARPENTER AND D. GOTTLIEB, Spectral Methods on Arbitrary Grids, J. Comput. Phys.

38



[28] J.

[29]j.

[30] T.

[31] Q.

[32] A.

[331 I.

[34] A.

[351 E.

[36] M.

[37] S.

[38] A.

[39] J.

[40] P.

[41]J.

[42] J.

[43] M.

[44] G.

[45] v.

[46] C.

129(1996), pp. 74-86.

S. HESTHAVEN AND D. GOTTLIEB, Stable Spectral Methods for Conservation Laws on Triangles with

Unstructured Grids, Comput. Methods Appl. Mech. Engin. 175(1999), pp. 361-381.

S. HESTHAVEN AND C. H. TENG, Stable Spectral Methods on Tetrahedral Elements, SIAM J. Sci.

Comput. 21 (2000), pp. 2352-2380.

_VARBURTON AND J. S. HESTHAVEN, High-Order/Spectral Methods on Unstructured Grids. II. Gen-

eral Systems of Conservation Laws, J. Comput. Phys. submitted.

CHEN AND I. BABU_KA, The Optimal Symmetrical Point,s for Polynomial Interpolation of Real

Functions in a Tetrahe&vn, Comput. Methods Appl. Mech. Engrg. 137(1996), pp. 89-94.

H. -_'IOHAMMADIAN, V. SttANKAR, AND _V. F. HALL, Computation of Electromagnetic Scatter-

in9 and Radiation using a Time-Domain Finite-Volume Discretization Procedure, Comput. Phys.

Comm. 68(1991), pp. 175-196.

BABUSKA AND A. K. Az1z, On the Angle Condition in the Finite Element Method, SIAM J. Numer.

Anal. 13(1976), Pt). 214-226.

Ditkowski, Bounded-Er_vr Finite Difference Schemes for hdtial Boundary Value Problems on Com-

plex Domains. PhD-Thesis, Department of Applied Mathematics, School of Mathematical Sciences,

Tel-Aviv University, Tel-Aviv, Israel. 1997.

SULI, C. SCHWAB, AND P. HOUSTON, hp-DGFEM for Partial Differential Equations with Nonneg-

ative Characteristic Form. In "Discontinu(ms Galerkin Methods. Theory, Computation and Apl)li-

cations", B. Cockburn, G. E. Karniadakis, and C. W. Shu (Eds). Lecture Notes in Computational

Science and Engineering 11, Springer Verlag, Berlin, pp. 221-230.

H. CARPENTER AND C. A. KENNED',', Fourth order 2N-storage Runge-Kutta scheme, NASA-TM-

109112, NASA Langley Research Center, VA. 1994.

ABARBANEL AND D. GOTTLIEB, On the Construction and Analysis of Absorbing Layers in CEM.

Appl. Numer. Math. 27(1998), Pl). 331-340.

TAFLOVE, Computational Electrodynamies: The Finite-Difference Time-Domain Meth.od. Artech

House, Boston, 1995.

.]. BOWMAN, T. B. A. SENIOR, AND P. L. USIILENGtH (EDS.), Electromagnetic and Acoustic

Scattering by Simple Shapes. North-Holland, Amsterdam, 1969.

_,V. BARBER ANI) S. C. HILL. Light Scattering by Particles: Computational Methods. World Scientific

Publishing Company, Singapore, 1990.

L. VOLAKIS, Benchmark Plate Radar Targets for the Validation of Computational Electromagnetics

Programs, IEEE Antennas Propagat. Mag. 34(1992), pp. 52-56.

DON(;ARRA, J. Du CROZ, I. DUFF, AND S. HAMMERLIN(;, A Set of Level ,7 Basic Linear Algebra

Subprograms (BLAS), http://www.netlib.org/blas/blas3-paper.ps

SNm, S. OTTO, S. HUss-LFDERMAN, D. WALKEB, AND J. DON(:ARRA, MPI: The Complete

Reference. hilT Press, 1996.

KARYPIS AND V. KUMAR, Multilevel k-way Partitioning Scheme for h'regular Graphs, ,]. Paral.

Distrib. Comput. 48(1998), pp. 96-129.

SAAD, IteTntive Methods for Sparse Linear Systems. 2rid Edition, 2000. http://www-

users.cs.umn.edu/_saad/books.html

C. DOI_GLAS, G. HAASE, J. Ht:, M. KOWARS('tItK, U. R()I)E. AN1) C. \VE1SS, Portable Memory

Hierarchy Techniques for PDE Solvers: Part II. SIAM News 33(2000).

39



[47] R.

[48] J.

[49] T.

[50] M.

[51] G.

[52] P.

[53] A.

[54] R.

[55] ft.

BISWAS, K. D. DEVINE, AND J. FLAHERTY, Parallel, Adaptive Finite Element Methods for Con-

servation Laws, Appl. Numer. Math. 14(1994), pp. 255-283.

PRORIOL, Sur une Famille de Polynomes gt deux Variables Orthogonaux dans un Triangle, C. R.

Acad. Sci. Paris 257(1957), pp. 2459-2461.

KOORNWINDER, Two-variable Analogues of the Classical Orthogonal Polynomials in "Theory and

Application of Special Functions", R. A. Askey ed., Academic Press, 1975, pp. 435-495.

DUBINER, Spectral Methods on Triangles and Other Domains, J. Sci. Cornput. 6(1991), pp. 345-390.

SZEG(3, Orthogonal Polynomials. Colloquium Publications 23, American Matlmmatical Society,

Providence, RI, 1939.

J. DAVIS AND P. RABINOW[TZ, Methods of Numerical Integration. Computer Science and Applied

Mathematics, Academic Press, New York, 1975.

H. STROUD, Approz.imate Calculation of Multiple IntegTuls. Prentice-Hall Publishing, New Jersey,

1971.

COOLS AND P. RABINOWI'rZ, Monomial cubature rules since Stroud: A Compilation J. Comput.

Appl. Math. 48(1993), pp..309-326.

COOLS, Monomial cubature rules since Stroud: A Compilation - Part 2 J. Coml)ut. Appl. Math.

112(1999), pp. 21 27.

4o





FormApproved
REPORT DOCUMENTATION PAGE OMBNo. 0704-0188

Publicreportingburdenforthiscollectionof informationisestimatedto average1 hourperresponse,includingthetimeforreviewinginstructions,searchingexistingdatasources,
gatheringandmaintainingthedataneeded,andcompletingandreviewingthecollectionof information.Sendcommentsregardingthisburdenestimateoranyotheraspectofthis
collectionof information,includingsuggestionsfor reducingthisburden,toWashingtonHeadquartersServices.DirectorateforInformationOperationsandReports,1215Jefferson
DavisHighway,Suite1204,Arlington,VA22202-4302.andto the Officeof ManagementandBudget,PaperworkReductionProject(0704-0188),Washington,DC20503.

1. AGENCY USE ONLY(Leaveblank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2001 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

High-order/spectral methods of unstructured grids I. Time-doniain

solution of Maxwell's equations

6. AUTHOR(S)
J.S. Hesthaven and T. Warburton

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
ICASE

Mail Stop 132C

NASA Langley Research Center

Hampton, VA 23681-2199

g. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Adnfinistration

Langley Research Center

Hampton, \_\4. 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION
REPORT NUMBER

ICASE Report No. 2001-6

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2001-210836

ICASE Report No. 2001-6

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Derails M. Bushnell

Final Report

Submitted to tile Journal of Computational Physics.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Catego_" 64

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)
We present an ab initio development of a convergent higli-order accurate scheme for the solution of linear conserva-
tion laws in geometrically complex domains. As our main example we present a detailed development and analysis

of a scheme suitable for the time-domain solution of Maxwell's equations in a tliree-dimensional domain. The fully

unstructured spatial discretization is made possible by the use of a high-order nodal basis, employing multivariate

Lagrange polynonfials defined on the triangles and tetraliedra. Careflfl choices of the unstructured nodal grid points

ensure lfigh-order/spectral accuracy, while the equations themselves are satisfied in a discontinuous Galerkin form
with the boundary conditions being enforced weakly through a penalty term. Accuracy, stability, and convergence of

tile seini-discrete approximation to Maxwell's equations is established rigorously and bounds on the global divergence

error are provided. Concerns related to efficient implementations are discussed in detail.

This sets the stage for the presentation of examples, verifying the theoretical results, as well as illustrating the

versatility, flexibility, and robustness when solving two- and tliree-dimensional benchmarks in computational elec-
troinagnetics. Pure scattering a.s well a.s t)enetration is discussed and high parallel performance of the scheme is
demonstrated.

14. SUBJECT TERMS

higli-order/st)ectral accuracy, stability, convergence, unstructured grids,

Maxwell's equations

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT
Unclassified Unclassified

_ISN 7540-01-280-5500

IS. NUMBER OF PAGES
45

16. PRICE CODE

A03

20. LIMITATION
OF ABSTRACT

I

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39-18

298 102


